Chain elongation suppression of cyclic block copolymers in lamellar microphase-separated bulk.
نویسندگان
چکیده
Chain elongation suppression of cyclic block copolymers in microphase-separated bulk was determined quantitatively. Solvent-cast and annealed films are confirmed to show alternating lamellar structure and their microdomain spacing D increases with increasing total molecular weight M according to the relationship D proportional, variant M0.59, which agrees quite consistently with the theoretically predicted power law, i.e., D proportional, variant M3/5. This result is in contrast to the well-established issue for linear block copolymers, where the relationship D proportional, variant M2/3 has been confirmed to hold both experimentally and theoretically. This means that chain elongation of each component block is suppressed considerably, owing to their looped conformation in strongly segregated bulk.
منابع مشابه
Interphase Composition Profile in SB/SBS Block Copolymers, Measured with Electron Microscopy, and Microstructural Implications
The behavior of microphase-separated block copolymers has major contributions from the mixed interphase existing between the two homogeneous phases. However, relatively little has been known about the interphase itself and, in particular, its composition profile has never been measured directly. Here, we have used quantitative transmission electron microscopy to acquire the shape of the volume-...
متن کاملSingle chains of block copolymers in poor solvents: handshake, spiral, and lamellar globules formed by geometric frustration.
A single multiblock copolymer chain in poor solvent undergoes microphase separation within its own globule, driven by the same kind of forces operating in the bulk system. However, the necessity of packing a large AB interface into a small volume leads to novel convoluted geometries. Long block lengths form a double droplet. Very short block lengths exhibit bulk behavior, forming a lamellar glo...
متن کاملOrder-order transition induced by mesophase formation in a novel type of diblock copolymers based on poly(isobutyl methacrylate) and poly[2,5- di(isopropyloxycarbonyl)styrene]†
Novel diblock copolymers based on poly(isobutyl methacrylate) (PiBMA) and poly[2,5di(isopropyloxycarbonyl)styrene] (PiPCS) were designed and prepared via consecutive atom transfer radical polymerization. They had relatively low molecular weight distributions and tunable molecular weights. The molecular characterization of the copolymers was performed with proton nuclear magnetic resonance spect...
متن کاملHierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains
Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by...
متن کاملWell Ordered Polymer Melts from Blends of Disordered Triblock Copolymer Surfactants and Functional Homopolymers
Microphase segregated block copolymer melts and solids have long garnered significant scientific interest due to their ability to spontaneously form periodic morphologies at controllable length scales. Their utility as stand-alone nanostructured functional materials or as templates for the fabrication of hierarchical solids is well documented. However, their deployment in large scale applicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 121 2 شماره
صفحات -
تاریخ انتشار 2004